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Abstract

We refine the test for clustering of Patton and Weller (2022) to allow

for cluster switching. In a multivariate panel setting, clustering on time-

averages produces consistent estimators of means and group assignments.

Once switching is introduced, we lose the consistency. In fact, under switch-

ing the time-averaged k-means clustering converges to equal, indistinguish-

able means. This causes the test for a single cluster to lose power under

the alternative of multiple clusters. Power can be regained by clustering

the N times T observations independently and carefully subsampling the

time dimension. When applied to the empirical setting of Bonhomme and

Manresa (2015) of an autoregression of democracy in a panel of countries,

we are able to detect clusters in the data under noisier conditions than the

original test.
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1 Introduction

We develop a test for clustering based on Patton and Weller (2022) that has power

under the alternative hypothesis that units of a panel switch clusters over time.

Clustering identifies patterns of heterogeneity in the data and can be used to find

an interpretable group structure or reduce the dimensionality of the parameter

space, for example. A wide range of methods have been proposed, some designed

to identify particular patterns. We focus here on clustering of means in multivariate

panel data. That is, each observation is drawn from one of several distributions

with different means, playing the role of their true clusters. Variations of the

popular k-means algorithm can then be used to identify and estimate the cluster

means given the true number of clusters. Selecting this number, however, is not a

trivial task. The most used methods rely on calculating an array of measures of

goodness-of-fit for each possible number of clusters considered, and condensing the

information contained in each measure to turn it into a decision. See Tibshirani

et al. (2001) for a comparison of several popular techniques. But the case of a

single cluster is at the periphery of this literature, however important it may be.

Indeed, several goodness-of-fit measures such as the Silhouette are not defined in

this setting. Patton and Weller (2022) elegantly bridge this gap by proposing

a test for the null hypothesis that there is only a single cluster in the data. In

their setting, each unit of the panel belongs to a single cluster, and, in combination

with a clustering method, they are able to consistently estimate the cluster means.

Relying on the central limit theorem of Pollard (1982) to guarantee the normality

of the estimated means, they can finally derive an F test for the difference in cluster

means. Importantly, they do not allow for the panel units to switch clusters over

time.

This paper concerns the case where panel units can belong to different clusters

over time. This is not a threat for the validity of the Patton and Weller (2022)

test (hereafter P&W), as under the null hypothesis of a single cluster switching

does not make any difference. Its power, however, can be seriously hindered,

as exemplified by our simulation study. We modify their test to allow for cluster

switching by clustering each observation independently, as a flattened cross-section,

and proposing a suitable subsampling scheme. In doing so we mostly ignore the
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unit dimension of the panel. This means that our test, and the clustering method

underneath, allow for arbitrary, non-parametric switching. We show that under

the alternative hypothesis allowing for switching, the P&W test relies on estimates

of the cluster means that are biased towards each other. In contrast, our test

produces estimates that are biased away from each other under the alternative.

This difference inflates our test statistic under the alternative hypothesis only,

while maintaining the validity under the null.

We illustrate the power gain of our test by revisiting the application of Bon-

homme and Manresa (2015). They use a variation of the k-means algorithm in the

context of a regression, using clustering to identify groups in a panel of countries

with common parameters. Their application is of special interest for us because,

although they do not allow for countries to switch clusters, their regression in-

cludes grouped time fixed effects that are interpreted as transitional clusters. We

can model them alternatively as cluster switching.

Our paper is not the first to model cluster switching in multivariate panel data.

See Catania (2021) for a score-driven mixture model with time-varying weights.

Munro and Ng (2022) model a group-structure in survey responses through latent

Dirichlet analysis, allowing for time-varying group membership. Custodio João,

Lucas, Schaumburg, and Schwaab (2022) use a score-driven hidden Markov model

to account for cluster switching in the context of banks’ business models. Custodio

João, Schaumburg, Lucas, and Schwaab (2022) use a similarly non-parametric

clustering model to allow for cluster switching.

Closely related is the literature on regime switching in Markov models. For

example, Cho and White (2007) propose a test for regime switching with the

null hypothesis of a single regime against the alternative of two regimes in panel

data. Although our aim is similar, their setting does not allow for different units

being subject to different regimes (or clusters) concurrently. Lumsdaine, Okui,

and Wang (2023) introduce structural breaks in a panel data model with grouped

heterogeneity. This includes cluster switching at the break points. The main

difference to ours is that we allow for unconstrained switching that need not be

synchronized across the units of the panel.

This paper is organized as follows. The following section briefly presents the
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P&W test. We develop our modified test in Section 2. In Section 3 we present

a simulation study to expose the cases where there is a difference in the power

of these two tests. Section 4 offers some insights on why there is a difference in

power in a simplified setting. Section 5 revisits the application of Bonhomme and

Manresa (2015) to compare the tests. Finally, Section 6 concludes.

1.1 Testing for clustering under switching

P&W proposed a statistical test for the null hypothesis that there is no clustering

in the data. In their setting a vector Yit of dimension d is observed for i = 1, . . . , N

units over t = 1, . . . , T periods, and comes from Yit = mi + εit, where εit are i.i.d.

and have zero mean and covariance Σi. Then, the null hypothesis can be expressed

as mi = µ∗ ∀ i.
As we develop on their test, it is important to be detailed on how it was

originally constructed. They employ a sample splitting scheme, dividing the T

periods in a group R of size R, and a group P of size P . As there is no time-

dependecy in their DGP, it does not matter how the sample is split. They suggest

an equal split between the first and second halves. It is assumed that units can

belong to one of G groups. The assignment of unit i is denoted by γi ∈ {1, . . . , G},
and γ denotes the vector of stacked γi. The mean vector of group g is denoted by

µg and the stacked vectors are denoted by µ.

The procedure begins by estimating means and cluster assignments jointly on

the R sample using a k-means procedure. The estimators are denotes µ̂NR and

γ̂NR. We can write the estimator as:

(µ̂NR, γ̂NR) = arg min
µ,γ

1

NR

N∑
i=1

∑
t∈R

G∑
g=1

||Yit − µg||21{γi = g}

Next the means on the P sample are calculate based on the estimated γ̂NR. This

is simply an averaging:

µ̃NP (γ̂NR) = arg min
µ

1

NP

N∑
i=1

∑
t∈P

G∑
g=1

||Yit − µg||21{γ̂i,NR = g} (1)
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Cluster variances (d× d) are estimated by:

Ω̂g,NPR =
1

NP

∑
t∈P

N∑
i=1

(Yit − Ȳit)(Yit − Ȳit)′π̂−2g,NR1{γ̂i,NR = g}

where π̂g,NR = N−1
∑N

i=1 1{γ̂i,NR = g} are estimates of the clusters sizes. Also

define

Ω̂NPR = diag{Ω̂1,NPR, . . . , Ω̂G,NPR}

The null hypothesis of the test can be stated as H0 : µ∗g = µ∗g′ ∀ g, where µ∗g

denotes the true mean of group g. It can be written as H0 : Ad,Gµ
∗ = 0 by defining

Ad,G
d(G−1)×dG

= [(ιG−1 ⊗ Id),−Id(G−1)] (2)

where ιn is an n× 1 vector of ones and In is the n× n identity matrix.

Lastly, define the test statistic

FNPR = NPµ̃′NP (γ̂NR)A′d,G(Ad,GΩ̂NPRA
′
d,G)−1Ad,Gµ̃NP (γ̂NR)

Then, Theorem 1 of Patton and Weller (2022) state that

FNPR
d→ χ2

d(G−1), as N,P,R→∞

They show that the test is correctly sized and has power in a range of relevant

2 Testing for clustering under switching

Once we introduce switching in the DGP, however, the power of the PW test

decreases steadily. Here we define the switching as a probability that the mean

mit is different from the next-period mean mi,t+1, for unit i. In short, the switching

rate p is

p = P(mi,t+1 6= mit). (3)

The precise definition of switching used does not matter for our main result in

Theorem 1.
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The power loss is intuitive. If we ignore the possibility of switching, two well-

separated clusters will blur together as we average the positions over time of units

that have been part of both of them. To see this more clearly let us focus on a

single unit first. As time goes by it will be more likely to have switched clusters at

some point, but the estimator of P&W would still classify it to a unique cluster.

When averaging its observations over time in (1), we would be averaging over

draws from different clusters.

To produce a test with power under the alternative hypothesis of cluster switch-

ing we propose to modify the original test slightly in order to accommodate switch-

ing in the estimation of the clusters’ parameters and membership. We do this by

clustering at the cross-sectional level instead of at the panel level, allowing for a

unit to be freely assigned to different clusters over time.

We start by modifying the assumptions of P&W by adding time-variation in

the cluster assignments and on the cluster sizes.

Assumption 1. (a) The data comes from Yit = mit + εit where εit ∼ iid Fi(0,Σi),

where Fi is some distribution with mean zero and covariance matrix Σi, for i =

1, . . . , N and t = 1, . . . , T , and where for all i, mi ∈M ⊂ Rd, Σi is positive definite,

and E [||εit||4] ≤ κ̄ <∞∀i, (b) εit ⊥⊥ εjs∀ i 6= j and ∀s, (c) N,P,R→∞.

Assumption 2. mit = µ∗ ∀ i, t

Assumption 2’. For known G ≥ 2,

(a) mit ∈ {µ∗1, . . . , µ∗G} ∀ i, t,

(b) ||µ∗g − µ∗g′ || > c > 0 ∀ g 6= g′, and

(c) limN→∞Ng,t/NT ≡ πg ≥ π > 0 for g = 1, . . . , G, t = 1, . . . , T ,

where Ng,t ≡
∑N

i=1

∑T
t=1 1{γ∗i,t = g}, and γ∗i,t ∈ {1, . . . , G} indicates to which

cluster unit i belongs at time t.

Assumption 2 represents the null hypothesis of a single cluster and 2’ represents

the alternative. Note that we assume that the limiting proportions πg and the true

cluster means µ∗g do not vary over time.

Our clustering procedure on sample R now accounts for switches:
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(µ̂NR, γ̂NR) = arg min
µ,γ

1

NR

N∑
i=1

∑
t∈R

G∑
g=1

||Yit − µg||21{γit = g} (4)

where γ̂NR is the vector of stacked assignments over N and R of size NR. This is

equivalent to a k-means procedure where each observation in the panel is treated

as an independent unit in a cross-section of size NR. The subsequent estimators

of the cluster mean and variances are also modified similarly:

µ̃NP (γ̂NR) = arg min
µ

1

NP

N∑
i=1

∑
t∈P

G∑
g=1

||Yit − µg||21{γ̂it,NR = g} (5)

and

Ω̂g,NPR =
1

NP

∑
t∈P

N∑
i=1

(Yit − Ȳit)(Yit − Ȳit)′π̂−2g,NR1{γ̂it,NR = g}

where π̂g,NR = (NR)−1
∑N

i=1

∑
t∈R 1{γ̂it,NR = g} are estimates of the clusters

sizes. As before, define

Ω̂NPR = diag{Ω̂1,NPR, . . . , Ω̂G,NPR}.

Although P&W put no restrictions on how to split the sample intoR and P , we

cannot choose freely. The possible switching imposes time-dependence that affects

the quality of the estimates of the means depending on how we split the sample.

We suggest an interspersed scheme where odd time indices go into one sample,

and even indices into the other. In this way the estimated cluster assignments at

some t ∈ R are used to predict assignments at t+ 1, which is itself in P . We can

write γ̂it,NR = γ̂i,t+1,NR for all t ∈ R to be consistent with (5).

The null hypothesis can be represented as before, with the same matrix Ad,G

in (2). We can now state our version of the theorem.

Theorem 1. Let γ̂NR be the estimated time-varying group assignments based

on sample R. Let µ̃NP (γ̂NR) be the estimated group means from sample P using

group assignments γ̂NR. Define the test statistic for the differences in the estimated
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means as

FNPR = NPµ̃′NP (γ̂NR)A′d,G

(
Ad,GΩ̂NPRA

′
d,G

)−1
Ad,GµNP (γ̂NR)

where Ω̂NPR
(dG×dG)

= diag
{

Ω̂1,NPR, . . . , Ω̂G,NPR

}
and Ω̂g,NPR

(d×d)
=

1

NP

∑
t∈P

N∑
i=1

(
Yit − Ȳit

) (
Yit − Ȳit

)′
π̂−2g,NR1{γ̂it,NR = g}

and π̂g,NR ≡
1

NR

N∑
i=1

∑
t∈R

1{γ̂it,NR = g}

(a) Under Assumptions 1 and 2,

FNPR
d→ χsd(G−1), as N,P,R→∞

(b) Under Assumptions 1 and 2’,

FNPR
p→∞, as N,P,R→∞

The proof of this theorem follows closely that in P&W and is presented in the

Appendix, with the differences being concentrated in the case under the alternative

hypothesis. As part of it we also show that the k-means procedure in (4) necessarily

produces distinct means when G = 2 in Lemma 1.

3 Simulation study

To illustrate the power gain of accounting for cluster switching we present a sim-

ulation study in Figure 1. We generate data from either one of two normally-

distributed clusters with means (m,m) and (−m,−m), and identity covariance

matrix, and several values of N and T . m varies from zero (the null hypothesis) to

2. We introduce cluster switching as in (3), with a probability of switching varying

from zero to 20%. The rejection rates from the P&W test are plotted in blue, and

from our test in red, considering a 5% confidence level.

Both tests display nominal rejection rates under the null hypothesis. If there

is no switching and m takes small positive values, the P&W test diligently rejects

the null as expected. In contrast, our test needs a greater separation between
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Figure 1: Simulation of rejection rates of the Patton and Weller (2022) test (blue)

and our modified version (red) under different values of the switching rate. Points are

generated from either one of two clusters centered at (m,m) and (−m,−m), both with

identity covariance matrix, and can change clusters with probability p. The plot shows

that the original test is severely underpowered under switching rates of at least 5% in

large samples. It is also noteworthy that a large T does not correct the problem, as there

are more switches in consequence.

the clusters to achieve a high power. Still under no switching, a larger N and T

uniformly increase power.

Once switching is introduced, power drops in all cases. This is drastically

visible in the P&W test, where even at large values of m we get low power in most
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cases. A large N still uniformly increases power, but T does not anymore. In fact,

a large T hinders the P&W test as it gets us closer to the limiting Markov chain

where the cluster assignments are completely mixed, meaning that one half of the

sample cannot predict the assignment of the other half reliably anymore.

The effect of a larger p in our test is limited. It causes a drop in power that

is only noticeable in settings with smaller sample sizes and less separated clusters.

In all settings, at m ≥ 0.5 the power of our test is close to 1 regardless of p. Here

there’s no distinction between N and T . As we cluster each point (i, t) indepen-

dently, as a single cross-section, an increase in either one leads to an increase in

power.

4 A few insights on the power of the test

We focus on the case of two clusters in one dimension in the DGP to compare the

estimated cluster means through the estimator in P&W and ours. We show that

under switching both are biased, but the bias works in opposite ways that make

the estimates look more separated when allowing for switching, and less so when

not.

One can think of the loss of power in the P&W test as a blurring of the

clusters induced by the misclassification that does not vanish asymptotically under

switching. Instead of averaging over true members of the cluster, we have to

average over some pairs (i, t) that are not in the correct cluster. This brings the

mean of these two clusters together the more misclassification there is.

In the modified test the opposite can happen. The ‘tails’ of a cluster that

spread closer to another cluster are classified in the latter. Symmetrically the tails

of the latter cluster are classified in the former. This causes a concentration of

probability mass closer to the mean compared to the true cluster’s distribution,

and moves the estimated mean away from the other clusters.

Taken together, these mean that the difference in estimated means is larger

when using the modified test than the standard under switching, inflating the F

statistic and making a rejection of the null more likely and increasing the power

of the test.
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Starting with the P&W test, recall the definition of the estimator of the mean

µ̂NR and assume without loss of generality that the true mean of cluster 1 is zero:

(µ̂NR, γ̂NR) = arg min
µ,γ

1

NR

N∑
i=1

∑
t∈R

G∑
g=1

||Yit − µg||21{γi = g}

The solution given the assignments is also the average:

µ̂g,NR(γ̂NR) =
1

N̂g,R

N∑
i=1

∑
t∈R

1{γ̂i,NR = g}Yit

And we can write the classifier as

γ̂NR(µ̂NR) = arg min
γ

N∑
i=1

∑
t∈R

G∑
g=1

||Yit − µ̂g,NR||21{γi = g}

γ̂i,NR(µ̂NR) = arg min
γ

G∑
g=1

∑
t∈R

||Yit − µ̂g,NR||21{γi = g}

The usual k-means procedure alternates between estimating the means given the

classes, and estimating the classes given the means, until convergence. Assume as

the best case that we start the procedure at the true values of the means, µ̂0
g,NR =

µg where the superscript indicates the iteration. If the assignments then do not

produce the same means µ̂1
g,NR = µg the procedure cannot achieve consistency.

We will look for the estimated means that produce such stable assignments. First,

we write down the classifier γ̂(µ̂) omitting the subscripts NR:

γ̂0i (µ̂
0) = arg min

γ

2∑
g=1

∑
t∈R

(Yit − µ̂0
g)

2
1{γi = g}

γ̂0i (µ̂
0) =

{
1 if R−1

∑
t∈R Yit ≤ µ̂0

2/2

2 otherwise

That is, unit i is assigned to cluster 1 if its average over time is closer to the center

of cluster 1. The next-iteration estimated means will be

µ̂1
g =

(
R

N∑
i=1

1{γ̂0i = g}

)−1∑
t∈R

N∑
i=1

Yit1{γ̂0i = g}
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At the limit of N this is

lim
N→∞

µ̂1
g = Ei

(
1

R

∑
t∈R

xt

∣∣∣∣∣ 1

R

∑
t∈R

xt ≤
µ̂0
2

2

)

Next we can take the limit over R. Note that the Markov chain of true assignments

converges to a proportion of half of the t in one cluster and the other half in the

other cluster for p > 0.

lim
R→∞

lim
N→∞

µ̂1
g = Ei

(
Et(x)

∣∣∣∣Et(x) ≤ µ̂0
2

2

)
=
µ2

2

That is, at the limit the estimator of the means converges to the midpoint of the

true means, where the clusters are indistinguishable. Note that γ̂0i (µ̂
0) is still a

solution to the classification step and so the k-means procedure can stop.

Next we turn to the modified statistic in Theorem 1. As we treat every obser-

vation (i, t) independently, we can use just one index i running from 1 to M = NR.

Again we start at µ̂0
g = µg. Then the estimator for the mean in the b-th step of

the k-means procedure is:

µ̂bg(γ̂) =

(
M∑
i=1

1{γ̂i = g}

)−1 M∑
i=1

1{γ̂i = g}Yi

and the initial classifier:

γ̂0i (µ̂
0) = arg min

γ

2∑
g=1

(Yi − µ̂0
g)

2
1{γ = g} =

{
1 if Yi ≤ µ̂0

2/2

2 otherwise

The next-iteration means will be

µ̂1
g =

(
M∑
i=1

1{γ̂0i = g}

)−1 M∑
i=1

Yi1{γ̂0i = g}

which, at the limit of M and for g = 1 initially, becomes

lim
M→∞

µ̂1
1 = Ef

(
x

∣∣∣∣x ≤ µ̂0
2

2

)
=

1∫
x∈R f(x)1{x ≤ µ̂0

2/2} dx

∫
x∈R

xf(x)1{x ≤ µ̂0
2/2} dx
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where f is the mixture distribution composed of the two clusters with equal weights

(with distributions f1 and f2). We can decompose it in equal parts for each cluster.

lim
M→∞

µ̂1
1 =

1

2
∫
x∈R f(x)1{x ≤ µ̂0

2/2} dx

∫
x≤µ̂02/2

x(f1(x) + f2(x)) dx

=
1

2(1/2)

∫
x≤µ̂02/2

x(f1(x) + f2(x)) dx

The condition for this estimator to be lower, and therefore farther from cluster 2,

is

lim
M→∞

µ̂1
1 < µ1 = Ef1(x)

⇐⇒
∫
x<µ̂02/2

x(f1(x) + f2(x)) dx <

∫
x∈R

xf1(x) dx∫
x≤µ̂02/2

x(f1(x) + f2(x)) dx <

∫
x≤µ02/2

xf1(x) dx+

∫
x>µ02/2

xf1(x) dx∫
x≤µ̂02/2

xf2(x) dx <

∫
x>µ02/2

xf1(x) dx

Note that f2(x + µ2) = f1(x) as they are only different up to a shift of the

mean. ∫
x≤µ̂02/2

xf2(x) dx <

∫
x>µ02/2

xf2(µ2 + x) dx∫
z≥µ̂02/2

(µ2 − z)f2(µ2 + z) dx <

∫
x>µ02/2

xf2(x+ µ2) dx∫
z≥µ̂02/2

(µ2 − 2z)f2(µ2 + z) dx < 0

The condition is satisfied as f2(x) > 0 ∀ x and (µ2 − 2z) < 0 ∀ z > µ̂0
2/2.

Symmetrically, it can be shown that limM→∞ µ̂
1
2 > µ2. Still due to the symmetry

the assignments γ̂1 will be the same and the k-means procedure can stop; both

means move in opposite directions by the same magnitude between iterations. The

estimated means are further away from each other than the true ones, inflating

the F statistic and inducing a higher power in the test.

13



5 Application

To showcase the effect of accounting for cluster switching in a concrete setting

we revisit the application of Bonhomme and Manresa (2015). They build on

Acemoglu et al. (2008) to estimate a model for democracy in a yearly panel of

countries. They add time fixed effects which are group specific, and estimate the

groups jointly with the estimation of the regression coefficients. Their model reads

as

democracyit = θ1democracyi,t−1 + θ2 logGDPpci,t−1 + αgi,t + νit (6)

where αgi,t are fixed effects specific of time t and group gi of country i. Group

assignments are fixed in time. democracy is the measure published by Freedom

House and logGDPpc is the percent change of log GDP per capita.

Their estimation procedure alternates between estimating the group assign-

ments and estimating the parameters θ and α until convergence by minimizing the

sum of squared errors of the equation in (6). The number of groups is not esti-

mated but chosen as the least amount of groups that produce parameter values

similar to those produced using more groups. This technique is common in cluster

analysis, see Tibshirani et al. (2001).

Bonhomme and Manresa (2015) find 4 clusters in their application. They are

characterized by grouped residuals which are plotted in the right-most panel of

Figure 6. The average level of the democracy variable of each group follows a

similar pattern. They interpret these groups as one high-democracy group, one

low-democracy group, and two transition groups: one early transition and one late

transition.

Could the same transition pattern be described by two clusters, one with a

high means and the other with a low mean, and a switching rate? Denote the

partial residuals by

ν̂ ′it = democracyit − θ̂1democracyi,t−1 − θ̂2 logGDPpci,t−1.

We apply ours and P&W’s test to ν̂ ′it, considering the alternative hypothesis of

two clusters. Can we detect clustering if we ignore the switching?
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Our simulation study indicates that in settings with clear clustering both tests

are able to reliably reject the null. If the clustering structure is clouded by means

that are too close together, the P&W test seems to have a higher power, and in

settings where switching is the problem our test seems to be a better choice.

Bonhomme and Manresa (2015) use data sampled in 5-year intervals and the

partial residuals in their setting are indeed clearly clustered (see the right-most

panel of Figure 7) such that both tests reject the null hypothesis. We muddy

the waters by starting from annual data instead. The annual democracy variable

is largely driven by discrete jumps stemming from, for example, sudden regime

change. This is reflected in the jumpy nature of the residuals (see, for example, the

left-most panel of Figure 7). In this setting, can we still reject the null hypothesis?

We design two sets of experiments based on the methods of Bonhomme and

Manresa (2015) and the data of Acemoglu et al. (2008). In the first one we use

annual data on democracy and logGDPpc from 1975 to 2000 and calculate moving

averages using zero to 10 lags. For each value of the length of this window we

estimate (6) using four groups. As the window expands, the partial residuals

ν̂ ′it of the regression become smoother. In the second experiment we use annual

data from 1970 to 2000, and sample the data at increasing frequencies from 1 to 5

years, such that at the 5-year frequency we coincide with the setting in Bonhomme

and Manresa (2015). Again, as we increase the frequency, pooling the jumps in

democracy, the residuals become smother. In both settings we take the partial

residuals produced as given and compare the p-values produced by either test.

The p-values plotted in Figures 2 (first experiment) and 5 (second experiment)

show that as we approach the smoother settings both tests are able to reject the

null hypothesis, but the independent k-means version also does it in settings where

the clustering structure is only apparent when allowing for cluster switching. See,

for example, the middle panel of Figure 3. It shows the grouped fixed effects

resulting from estimating (6) over annual data averaged in moving windows of 5

lags. Although one of the resulting groups has a stable mean around zero, the other

three are volatile, sometimes diverging from zero, sometimes merging back. These

patterns might not be visible when looking for two clusters with no switching as

there is no stable cluster with a high mean. Once we allow for switching we can
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Figure 2: p-values in the first experiment according to the length of the moving average

window. The dashed line marks the 5% level.

Figure 3: Grouped fixed effects in the first experiment for three values of the length

of the moving average window. As we increase the window length, the groups become

more clearly separated.

form a high-mean cluster with variable composition whose mean is significantly

different from the low-mean cluster.

These results indicate that ignoring the possibility of cluster-switching might

lead us to ignore a clustering structure that is in fact present in the data.
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Figure 4: Individual partial residuals in the first experiment for three values of the length

of the moving average window. As we increase the window length, the residuals become

smoother and the clustering more apparent.

Figure 5: p-values in the second experiment according to the sampling frequency. The

dashed line marks the 5% level. The right-most point coincides with the application in

Bonhomme and Manresa (2015).

6 Conclusion

In this paper we have argued that a clustering structure might be masked by

switching, and when testing for clustering as in Patton and Weller (2022) we

might want to allow for this possibility. We have suggested a variation of their

test that can handle variable cluster compositions and is still valid under the same
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Figure 6: Grouped fixed effects in the second experiment for three values of the sampling

frequency. As we increase the frequency, the groups become more clearly separated. The

right-most panel coincides with the application in Bonhomme and Manresa (2015).

Figure 7: Individual partial residuals in the second experiment for three values of

the sampling frequency. As we increase the sampling frequency, the residuals become

smoother and the clustering more apparent. The right-most panel coincides with the

application in Bonhomme and Manresa (2015).

null hypothesis. This new test has power under the alternative hypothesis that

have different means, but units switch between them, which is indistinguishable

from a single cluster for the test in P&W. We have shown, in a simplified setting,

that the power of the test comes from the bias in the estimation of the cluster

means, while the P&W test presents a bias that hinders its power. Revisiting the

application of Bonhomme and Manresa (2015) we have shown that our test can
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detect a clustering structure in settings where the clustering is not clear and there

is potentially strong switching.
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7 Appendix

Proof of Theorem 1. (a) We first find the limiting distribution of
√
NPµ̃NP (γ̂NR)

conditional on the information set FR = σ
(
{Yit}Ni=1, t ∈ R

)
.

Denote N̂g,R ≡
∑N

i=1

∑
t∈R 1{γ̂it,NR = g} the total (estimated) size of group

g on sample R and π̂g,R = N̂g,R/NR the estimated relative size. Note that the

minimization in (5) results in a group average, so1

µ̃g,NP =
R

PN̂g,R

N∑
i=1

∑
t∈P

1{γ̂it,NR = g}Yit

=
1

NP

N∑
i=1

∑
t∈P

Yitπ̂
−1
g,R1{γ̂it,NR = g}

for g = 1, . . . , G. Thus,2

√
NP

(
µ̃g,NP (γ̂NR)− µ∗g

)
=

1√
NP

N∑
i=1

∑
t∈P

(µ∗g + εit)π̂
−1
g,R1{γ̂it,NR = g} −

√
NPµ∗g

=
1√
NP

N∑
i=1

∑
t∈P

Ûitg,NRεit

+
µ∗gNR

N̂g,R

√
NP

N∑
i=1

∑
t∈P

1{γ̂it,NR = g} −
√
NPµ∗g

=
1√
NP

N∑
i=1

∑
t∈P

Ûitg,NRεit

with Ûitg,NR ≡ π̂−1gR1{γ̂it,NR = g}. Note that it is bounded due to the assumption

of a minimum cluster size in Assumption 2 and 2’(c). Define

Ω̄g,NR ≡ Var

[
1√
NP

N∑
i=1

∑
t∈P

Ûitg,NRεit | FR

]
=

1

NP

N∑
i=1

∑
t∈P

Û2
itg,NRΣi

where Σi = Var[εit] and the second line holds as εit is uncorrelated in the time series

and cross-section. We then obtain the asymptotic distribution of µ̃g,NP (γ̂NR):
√
NP Ω̄

−1/2
g,NR

(
µ̃g,NP (γ̂NR)− µ∗g

) d→ N(0, I)

1We should assume additional that N̂g,R = N̂g,P due to our sampling scheme and how we

translate assignments from R to P. Then the notation could be simplified.
2Again we should assume that the samples are symmetric and predict t + 1.
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for g = 1, . . . , G.

Next we show that Cov[µ̃g,NP (γ̂NR), µ̃g′,NP (γ̂NR)] = 0 for g 6= g′. Consider

elements k and k′ in groups g and g′ of the vector (µ̃g,NP (γ̂NR) − µ∗g). Their

covariance is:

E
[
(µ̃gk,NP (γ̂NR)− µ∗gk)(µ̃g′k′,NP (γ̂NR)− µ∗g′k′)

∣∣ FR]
=

1

N2P 2
E

[(
N∑
i=1

∑
t∈P

π−1g,R1{γ̂it,NR = g}εitk

)(
N∑
j=1

∑
s∈P

π−1g′,R1{γ̂jt,NR = g′}εjsk′
)∣∣∣∣∣FR

]
= 0

As 1{γ̂it,NR = g}1{γ̂it,NR = g′} = 0 and E(εitkεjsk′) = 0 ∀(i, t) 6= (j, s). Thus we

obtain the limiting distribution for the entire vector µ̃NP (γ̂NR):

√
NP Ω̄

−1/2
NR (µ̃NP (γ̂NR)− µ∗) d→ N(0, I)

where Ω̄
−1/2
NR is block-diagonal with

(
Ω̄
−1/2
1,NR, . . . , Ω̄

−1/2
G,NR

)
along the diagonal. Con-

sider the following estimator of Ω̄g,NR:

Ω̂g,NPR =
1

NP

∑
t∈P

N∑
i=1

Û2
igt,NR(Yit − Ȳi)(Yit − Ȳi)′

=
1

NP

∑
t∈P

N∑
i=1

Û2
igt,NRε̂itε̂

′
it

which can be shown to be consistent for all g. So Ω̂NPR − Ω̄NR
p→ 0 and

√
NP Ω̂

−1/2
NPR(µ̃NP (γ̂NR)− µ∗) d→ N(0, I)

Under the null hypothesis of one cluster we have AdGµ
∗ = 0d(G−1), and finally:

FNPR = NPµ̃′NP (γ̂NR)A′d,G

(
Ad,GΩ̂NPRA

′
d,G

)−1
Ad,GµNP (γ̂NR)

d→ χ2
d(G−1)

(b) Note that µ̃NP (γ̂NR)−µ∗ = (µ̂NR−µ∗)+(µ̃NP (γ̂NR)− µ̂NR). The second term
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is

µ̃g,NP (γ̂NR)− µ̂g,NR

=
1

NP

N∑
i=1

∑
t∈P

Yitπ̂
−1
g,R1{γ̂it,NR = g}

− 1

NR

N∑
i=1

∑
t∈R

Yitπ̂
−1
g,R1{γ̂it,NR = g}

=
1

N

N∑
i=1

π̂−1g,R

(
1

P

∑
t∈P

(mit + εit)1{γ̂it,NR = g} − 1

R

∑
t∈R

(mit + εit)1{γ̂it,NR = g}

)

= op(1) +
1

N

N∑
i=1

π̂−1g,R

(
1

P

∑
t∈P

mit1{γ̂it,NR = g} − 1

R

∑
t∈R

mit1{γ̂it,NR = g}

)

= op(1) + π−1g,Rµ
∗
g

(
N̂g,P

NP
− N̂g,R

NR

)
→ 0, as N,P,R→∞

where the last line is due to Assumption 2’. This holds for g = 1, . . . , G. Pollard

(1981) shows that k-means estimator of the means µ̂NR converges to the minimum

of the objective function µ[. For G ≥ 3 it is assumed that this is a set of k distinct

points, such that µ[
′
A′d,G > 0. For G = 2, Lemma 1 guarantees that the solution

will consist of distinct points. Thus µ̃NP (γNR)
p→ µ[ as N,P,R→∞. This implies

that

µ̃′NP (γ̂NR)A′d,G

(
Ad,GΩ̂NPRA

′
d,G

)−1
Ad,Gµ̃NP (γ̂NR)

p→ µ[
′
A′d,G

(
Ad,GΩ̂NPRA

′
d,G

)−1
Ad,Gµ

[ > 0

such that FNPR
p→∞, as N,P,R→∞.

Lemma 1. The solution to the clustering problem in (4) converges in probability

to two distinct means when G = 2.

Proof of Lemma 1. State the problem as

(µ̂, γ̂) = arg min
µ,γ

W (µ) = arg min
µ,γ

1

M

M∑
i=1

G∑
g=1

||Yi − µg||21{γi = g}
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The solution given the assignments is the average:

µ̂g(γ̂) =
1∑M

i=1 1{γ̂i = g}

M∑
i=1

1{γ̂i = g}Yit

And the classification rule given the estimated means:

γ̂(µ̂) = arg min
γ

M∑
i=1

G∑
g=1

||Yi − µ̂g||21{γi = g}

Pollard (1981) shows that the solution converges to the minimizer of the within-

cluster distance W . We show that the minimum W (µ) when µ contains two

coinciding centers occurs when these centers lie in a convex combination µ] of the

true centers. Then we show that µ] is not a minimizer of W . Let the centers be

indexed by j and k. The average within cluster distance is:

W (µ̂) =
1

M

M∑
i=1

∑
g=j,k

||Yi − µ̂g||21{γ̂i = g}

plimW (µ̂) = E
(
||Yi − µ̂γ̂i ||2

)
= E

(
||µγ∗i − µ̂γ̂i||

2 + 2ε′i(µγ∗i − µ̂γ̂i) + ε′iεi
)

= E
(
||µγ∗i − µ̂γ̂i||

2
)

+
πjΣj + πkΣk

πj + πk

= E
(
||µγ∗i − µ̂γ∗i ||

2
)
P (γ̂i = γ∗i ) + E

(
||µγ∗i − µ̂γ′i ||

2
)
P (γ̂i 6= γ∗i )

+
πjΣj + πkΣk

πj + πk

Now assume µ̂j = µ̂k = µ̂].

plimW (µ̂]) = E
(
||µγ∗i − µ̂

]||2
)
P (γ̂i = γ∗i ) + E

(
||µγ∗i − µ̂

]||2
)
P (γ̂i 6= γ∗i )

+
πjΣj + πkΣk

πj + πk

=
(
||µj − µ̂]||2

)
P
(
γ̂i = γ∗i |γ∗i = j, µj, µ̂

]
)
πj

+
(
||µk − µ̂]||2

)
P
(
γ̂i = γ∗i |γ∗i = k, µk, µ̂

]
)
πk

+
(
||µj − µ̂]||2

)
P
(
γ̂i 6= γ∗i |γ∗i = j, µj, µ̂

]
)
πj

+
(
||µk − µ̂]||2

)
P
(
γ̂i 6= γ∗i |γ∗i = k, µk, µ̂

]
)
πk

+
πjΣj + πkΣk

πj + πk
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When µ̂j = µ̂k = µ̂] the assignment criterion is not defined. Let units are assigned

with probability π]g to cluster g.

plimW (µ̂]) =
(
||µj − µ̂]||2

)
π]jπj +

(
||µk − µ̂]||2

)
π]kπk

+
(
||µj − µ̂]||2

)
π]kπj +

(
||µk − µ̂]||2

)
π]jπk

+
πjΣj + πkΣk

πj + πk

Then the µ̂] that minimizes the variation W is the weighted midpoint µ̂] = πjµj +

πkµk. This rules out other exotic allocations of µ̂]. The variation in this case is:

plimW (µ̂]) = ||(1− πj)µj − πkµk||2πj + ||(1− πk)µk − πjµj||2πk

+
πjΣj + πkΣk

πj + πk

= 2πkπj||µj − µk||2 +
πjΣj + πkΣk

πj + πk

Consider now the estimates µ̂j = µ]+Ξj = πjµj+πkµk+Ξj and µ̂k = µ]−Ξk =

πjµj + πkµk − Ξk.

plimW (µ̂) = E
(
||µγ∗i − µ̂γ∗i ||

2
)
P (γ̂i = γ∗i ) + E

(
||µγ∗i − µ̂γ′i ||

2
)
P (γ̂i 6= γ∗i )

+
πjΣj + πkΣk

πj + πk

= ||µj − µ̂j||2(1−misj)πj + ||µk − µ̂k||2(1−misk)πk
+ ||µj − µ̂k||2misjπj + ||µk − µ̂j||2miskπk

+
πjΣj + πkΣk

πj + πk

= ||πk(µj − µk)− Ξj||2(1−misj)πj
+ ||πj(µk − µj) + Ξk||2(1−misk)πk
+ ||πk(µj − µk) + Ξk||2misjπj
+ ||πj(µk − µj)− Ξj||2miskπk

+
πjΣj + πkΣk

πj + πk
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Let Ξj = ξj(µj − µk) and Ξk = ξk(µj − µk)

plimW (µ̂) = ||πk(µj − µk)− ξj(µj − µk)||2(1−misj)πj
+ ||πj(µk − µj)− ξk(µk − µj)||2(1−misk)πk
+ ||πk(µj − µk)− ξk(µk − µj)||2misjπj
+ ||πj(µk − µj)− ξj(µj − µk)||2miskπk

+
πjΣj + πkΣk

πj + πk

= ||µj − µk||2(1−misj)πj(πk − ξj)2

+ ||µk − µj||2(1−misk)πk(πj − ξk)2

+ ||µj − µk||2misjπj(πk + ξk)
2

+ ||µk − µj||2miskπk(πj + ξj)
2

+
πjΣj + πkΣk

πj + πk

Where misj is the misclassification probability of units in cluster j.

At ξk = ξj = 0, let us again denote by π]j the probability of assigning a unit

to cluster j. Then the misclassification probability is mis]j = (1 − π]j)πj, and

mis]k = π]j(1 − πj). Finally, we take the derivative of the probability limit of the

variation and evaluate it at the threshold ξk = ξj = 0.

∂ plimW (µ̂)

∂ξj

∣∣∣∣
ξj=0

= ||µj − µk||2
(
− 2(1−misj)πjπk

− 2(1−misk)πkπj + 2misjπjπk + 2misjπjπk
)
< 0

⇐⇒ misj +misk < 1 ⇐⇒ (1− π]j)πj + π]j(1− πj) < 1

Which is true for any combination of πj < 1 and π]j < 1, and similarly for the

derivative with respect to ξk. In conclusion, plimW (µ]) is not minimized at any

vector of means where the means of two clusters are the same.
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